Seminar Series on Graph Neural Networks 06
Towards efficient graph learning

Yong-Min Shin
School of Mathematics and Computing (Computational Science and Engineering)

Yonsei University
2025.05.19

ASHHIASHE (HIAFIIOFOF € A
S| LB (A LHrera sy III L (A] P
S

School of Mathematics and Computing

(Computational Science and Engineering) Gwangju Institute of Science and Technology

Before going in....

Towards application of graph neural networks

Towards efficient graph learning Explainable graph neural networks

Fundamental topics on graph neural networks

On the representational power of graph neural networks A graph signal processing viewpoint of graph neural networks

From label propagation to graph neural networks On the problem of oversmoothing and oversquashing

Introduction to graph mining and graph neural networks
(Basic overview to kick things off)

* Presentation slides are available at:

Ir.
B I:III L .
(jordan7186.github.io/presentations/) |m -

Objectives

1. Understanding the practical limitations of GNNSs in terms of efficiency
2. Overview of related field 1: Simple GNNs
3. Overview of related field 2: GNN-to-MLP knowledge distillation

. Also check: (Shin et al., Propagate & Distill: Towards effective graph learners using propagation-
embracing MLPs, LoG 2023), which is on the same subject ©

Recap: Message-passing in graph neural networks

LRTnEnEnfnt b Rovng

Collect

[Definition of message passing (Gilmer)
1. Message passing phase 2. Update phase
(Aggregation) (Transformation) EaReddouiliase
m?—l - Z Mt(hfﬂ hiﬂ evw) h?—l — Ut(hfn mf)—i_l) hg = R(h{a T ah%l;)
§ wEN (v))

Gilmer et al., Neural Message Passing for Quantum Chemistry, ICML 2017

Recap: Message-passing in graph neural networks

Global view

O(L(V+ FE))

Message function If‘> Update function

Node view |
O(r") | C‘b

Update function

Understanding the practical limitations of GNNs in terms of efficiency

Rethinking GNN time complexity w.r.t. number of layers

~ -

Newlyaddednodes[® 000 0000 000000 J

The number of nodes included in the computation (receptive field) tends to increase exponentially w.r.t. number of GNN layers.
Intuitive understanding: Assume each node has an average of d neighboring nodes, then the total number of nodes will be @”L for L GNN layers.

Rethinking GNN time complexity w.r.t. number of layers

90 A

89 A

o0
o

micro-fl (%)

o<}
w

w [« o
w o w
s L

micro-f1 (%)

(a) Micro-f1 of GAT on Facebook

time cost (s)

3 a 1 2
#layer #layer

Yan et al., TinyGNN: Learning Efficient Graph Neural Networks, KDD 2020

3 4

(b) Micro-f1 of GAT on AliGraph

175.0718

(c) Time cost of GAT on Facebook

3500 A

3000 A

2500 A

N
(=3
o
o

time cost (s)
g

1000 A

500 -

).5081

3.4994

3415.1206

106.7618

2

#layer

3 4

(d) Time cost of GAT on AliGraph

(a, b) As the number of layers increase, the number of nodes to consider per nodes increases exponentially.

(c, d) Although the performance gains are there, the feed-forward (inference) time also increases exponentially
(here, we are interested in mini-batch or single batch inference)

Rethinking GNN time complexity w.r.t. number of layers

Table 1: Time and space complexity of GCN training algorithms. L is number of layers, N is number of nodes, ||A||o is number
of nonzeros in the adjacency matrix, and F is number of features. For simplicity we assume number of features is fixed for all
layers. For SGD-based approaches, b is the batch size and r is the number of sampled neighbors per node. Note that due to the
variance reduction technique, VR-GCN can work with a smaller r than GraphSAGE and FastGCN. For memory complexity,
LF? is for storing {W(l)}{‘:1 and the other term is for storing embeddings. For simplicity we omit the memory for storing the
graph (GCN) or sub-graphs (other approaches) since they are fixed and usually not the main bottleneck.

GCN [9] Vanilla SGD | GraphSAGE [5] | FastGCN [1] | VR-GCN [2] | Cluster-GCN
Time complexity | O(L||A||oF + LNF?) | O(d“NF?) O(r'NF?) | O(rLNF?) | O(L||Al[oF + LNF? + r“*NF?) | O(L||Al|oF + LNF?)
Memory complexity | O(LNF + LF?) O(bd™F + LF?) | O(br’F + LF?) | O(brLF + LF?) O(LNF + LF?) O(bLF + LF?)

*As we have mentioned earlier, the complexity differs when we are talking
about (1) full-batch inference and (2) mini-batch or single inferece.

1. Sample neighborhood 2. Aggregate feature information
from neighbors

Let’s limit the number of neighboring nodes to aggregate per node: O(r*) — O(d*), d < r

(Top) Chiang et al., Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks, KDD 2019
(Bottom) Hamilton et al., Inductive Representation Learning on Large Graphs, NeurlPS 2017

Why does this matter?

Limited large-scale applications in real world: Despite vast research in academia,
GNNs are rarely used in the industry (expecially in terms of web-service or recommendation systems)

‘Science Paper KDD’17, August 13-17, 2017, Halifax, NS,

lutlonal Neural Networks for Web-Sca
Systems i
i . for Recommending 3+ BlIIlon Items to
Hc al Networks for Friend Rankmg v] .
Wllham L. Hamllton Jure LeskoveL g S, : an G : ahoo Japan C 4 = o , Li
{the kaifengchen, pong)@pinterest. cnm,(rL-xymg.wlmf,jur(')((bstanfmd.cdu Yo¥€h Liu, Jungu, Neil Shah oyl P a, Charles Sugnet, Mark Ulrich, Jure Leskovec
University « “hampaign Snap Inc. ira Tajime i

Shingo Ono Pinterest
Yahoo Japan Corporation {pong,pranavjindal,zitaoliu,yuchen,rsharma,sugnet,mu,jure}@pinterest.com

asa. odu {yliu2,jyu3, nshah}Omap com Yahoo Japan Corporation
ADS Trac KDD "21, August 14-18, 2021, Virtual Event, Singapore, Tokyo, Japan _ Tokyo,Japan
shiono@yahoo-corp.jp atajima@yahoo-corp.jp

KDD "21, August 14-18, 2021, Virtual Event, Singapore

ding for E-commerce KDD "21, August 14-18, 2021, Virtual Event, Singapore

libaba

m' { Ou ’ Huan Zhao
‘m You ¥ 2nd rtment of Computer Science and Engineering

ed System for User Cold Start i e Le for ?ss.nma.

ilr

wards the D-iphmal Online Experiment De ign for

ab

-Gal dada
. ive a
T e arch . Lab Intelligent Lab rsity of Science and Technology
research@deezer.com LIX, Ecole Polytechnique LAMSADE, Univ. Paris Dauphine phZO;lern nyu.edu Beijing, China Beijing, China Kowloon, Hong Kong
maofei.qgpf@plibaba-inc.com o
hhaoaf@cse.ust.hk Fren Komeoglu
Walhart L.
“allornia, “alifornia, ¥5A

Sunnyvall

T_lv“m mdllLtnte EKorpeog @walmart.com
¥n1r

Deezer Research Deezer Research
Ahbaba[::):;:i:ecn:);:gnemd Ne;;:ar\{;in?':r;m Al yﬁ' ﬁ mnd Engineering Sunnyvale, Calilon
Beijing, China atuzhili@stern nyn.edu B cidpeqand Technology Dds%“lm“mmmo ne
el {shaobo.zzbbingiang libaba-inc.com Kowloon, Hong Kong
dlee@cse.ust.hk Sushant Kannan Achan
ADS Track Paper KDD "21, August 14-18, 2021, Virtual Event, Singapore Walmart Labs Walmart Labs
Sunnyvale, California, USA Sunnyvale, California, USA
SKumar4@walmartlabs.com KAchan@walmartlabs.com
Graph: A Com ivedGraph Neural Network . . . : :
Platf Le d Audience via Meta Hybrid Experts and e Video Recommendation System

Rong Zhu, Kun Zh r'mlang Wellm Chang Zhou Baole Ai, Yong Li, Jingren Zhou geRank for retrieving related

b) b e zhichao juc ba-inc.com zhe.wiz,
Mathieu Morlon Viet-Anh Tran %
X y s ® M VYM;@) 7 Alfﬂ‘ETuthﬂm o Zhibo zhanﬂ'nn r 7Iao I Dik Lun Lee

Junning Liu
Google Inc
lin@google.com

Palash Na or Van Vieet
Google Inc Google Inc
palash@google.com tvw@google.com

lore

001 L(_‘hlm\ .
rotilov', Ilnur Shugaepov',

Chat Search Application Department, Tencent, China
C.ave sity of Chinese Academy of Sciences, Beijing 100049, China |
5Xiamen Data Intelligence Academy of ICT, CAS, China egerty
{ehuyongehun1ss, caojuan@ictac.cn, danydliv,ruobingsie, rolyhao, kavinge, suonezhang,

CIKM 20, October 19-23,2020, Virtual @ .com

I rsified
Co t afibn

Junheitg Hao'*, Tong Zhao?, Jin'L1", Xin Luna Dc=~?
Christosiglautsas?? Vislg®Sur’”, Wei Wang'
University of California, Los Atigercs , Amazon.com?, Carnegie Mell
[jhao.yzsun, weiwang] @cs.ucla.edu, [zhaoton, jincli,lunadong, faloutso

amarbudhiraja@meta.com, emrey @meta.com, ishug@meta.com,

gigz@nuc
TE: Friendship, Action and Temporal
{}; SHapCHat™ ™
h

, Neil Shah#, Xiaolin Shi* Prasenjlt Mitra® , Suhang Wang“
_¢ Pennsylvania State University ", Snap Inc.# LiGNN: Gra
{xut10, pum10, szw494}@psu.edu {yliu2, nshah, xiaolin}@snap.com

pplied Research

Xianfeng

Neural Networks, n

ochen Hou,

Pinner rk for i i o b to7a
e Es o o ing Ji iti a 4 i ddharth Dangi,
i i i i i\ tein*, Baolei Li*,

aichao Wel, Amo)
LinkedIn Inc.

ombatchai®, Yitong Zhou*, Bo Zhao, Charles Rosenberg, Jure Leskovec
Pinterest Inc.
{apal,pong,yzhou, bozhao,crosenberg, jure}@pinterest.com

Aditya Pal”, Chan

Why does this matter?

Limited large-scale applications in real world: Despite vast research in academia,
GNNs are rarely used in the industry (expecially in terms of web-service or recommendation systems)

OpenReview.net

< Go to ICLR 2022 Conference homepage

Graph-less Neural Networks: Teaching Old MLPs New Tricks Via
Distillation @

Shichang Zhang, Yozen Liu, Yizhou Sun, Neil Shah
Published: 29 Jan 2022, Last Modified: 04 May 2025 ICLR 2022 Poster ~ Readers: @ Everyone Show Bibtex ~ Show Revisions

4. Scenarios we can't meet the inference time constraint even with batching and graph-wise sampling

e As discussed in response #3, batching and graph-wise sampling are typically for training. Inference efficiency remains a challenge even with
node/layer-wise sampling. More importantly, instead of meeting a fixed constraint, practical (deployed) models almost always aim to minimize
inference time. For GNNs, due to the graph-dependency nature, inference time can meet a fixed time constraint for now doesn’'t mean it can meet
the constraint later when the user base grows and graph densification occurs. A concrete example is GraphInfer [10]: Table 5 in GraphInfer shows
that it takes 4423s for a full batch inference of the highly-optimized Graphlnfer, so for each 0.01% nodes growth, it will take an added ~400ms,
which is considered slow in the standard of the Amazon study: “every 100ms of latency cost them 1% in sales” [12].

e Moreover, from the computing side, inference time can meet a constraint on a server doesn't mean the same model can meet the constraint when
deployed on a phone. From the throughput side, fast inference is necessary for high-throughput. When #inference query increases, a small
improvement on each query can greatly affect business revenue. A related study by Akamai shows that "A 100-millisecond delay in website load
time can hurt conversion rates by 7 percent" [13]. Another example where GNNs are used more often is recommendation systems (RSs). Real RSs
often go through two steps. Stage A retrieves representations of relevant items. Then stage B ranks over them [14]. The lower latency in stage A,
the more items can be retrieved, and the better performance in stage B for the overall ranking.

https://openreview.net/forum?id=4p6_5HBWPCw

Two major approaches to solve this problem

Simpler GNNs: Making GNN architectures more simple

O 000 e0o0e® 000000

4

GNN-to-MLP KD: Training a very good MLP model via knowledge distillation from a GNN teacher

*We will also briefly do an overview of sampling, sparsicification, decoupling, and MLPInit along the way.

Simple GNN models
(SGC; Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

13

Motivation: Simple counterpart in graph domain

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

“Historically, the development of machine learning algorithms has
followed a clear trend from initial simplicity to need-driven complexity.”

Motivation to construct a
simple & almost linear

version of GNN. \AII_N_O_CO_ uﬁtgrga?t _i

Simple Graph
Convolution
(SGC)

4 N

Linear perceptron

Linear image filters

| for GNNs? !

N /

Simple and
easy to interpret

-

_

Multi-layer
perceptron
(MLP)

Convolutional

neural network

(CNN)

network
(GCN)

Graph convolutional

/

Introduced due to
nsufficiencies in
previous models

Reference model:
GCN (Kipf, 2017)

Reference model: GCN

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

One layer of GCN
fi(A,X) =o(AXOM)

N Number of nodes
fl c RNXN Normalized adjacency matrix
X € RNXD D-dimensional feature matrix

@(k) Learnable weight matrix 2 Non-linear MLP
at kth layer | R ‘
o) Non-linear activation function
fr kth GCN layer

Y = AX s (YO)

1. Local averaging

Reference model: GCN

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

Overall architecture of GCN for node classification

One layer of GCN
fi(A, X) = o(AXOW)

N Number of nodes Stack klayers
A € RVXN Normalized adjacency matrix +
NXD _Ai . . ~ ~ ~ ~

X eR D-dimensional feature matrix h(A, X) = f (A, f(k—l)(Aa e (A, X)) L))

@(k) Learnable weight matrix

at kth layer
, . : Softmax for classification
o) Non-linear activation function

~

YGCN = softmax(h(A, X)))

fr kth GCN layer

Label prediction

Model architecture for Simplified Graph Convolution

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

One layer of GCN One layer of SGC
fi(A, X) = o(AxeW) fi(4,X) = AxeW

V

Stack klayers Remove the non-linear activation function for linearity

v h(A, X)=[4A---Alx .. oM ...0¢k-1gk)

~ ~ ~ ~ /
h(A, X) = fu(4, f(k—l)(Aa"'fl(AaX))"'))/ Collapse >/CG)"(U'-'@(k1)@("’)—>@
N . ollapse
h(A, X) =|AX -- |6

Softmax for classification

A 4

~

Y con = softmax(h(4, X))) Ysqe = softmax(A* X 0O)

|

Label prediction Label prediction

Empirical performance of Simplified Graph Convolution

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

Table 2. Test accuracy (%) averaged over 10 runs on citation net-
works. "We remove the outliers (accuracy < 75/65/75%) when
calculating their statistics due to high variance.

| Cora | Citeseer | Pubmed
Numbers from literature: Task: semi-node classification
GCN 81.5 70.3 79.0
GAT 83.0+0.7 | 725+0.7 | 79.0+0.3 Dataset: Citation networks (Cora / Citeseer / Pubmed)
GLN 81.2+0.1 | 70.9+0.1 | 78.9+0.1
AGNN 83.1+0.1 | 71.74+0.1 | 79.9+0.1
LNet 795+1.8 | 66.2+1.9 | 78.3+0.3
AdaLNet | 804+1.1 | 68.7+1.0 | 78.1+0.4
DeepWalk | 70.7+0.6 | 51.4+0.5 | 76.84+0.6
DGI 823+£06 | 71.8+0.7 | 76.8+0.6 The performance of SGC is very competitive
Our experiments: w.r.t. GCN and other GNNSs.
[GCN 81.4+0.4 | 70.9+0.5 | 79.0+0.4
GAT 83.3+0.7 | 726+0.6 | 78.5+0.3
FastGCN 798403 | 688406 | 77.4+03 It is worth noting that SGCs already have the
GIN 76+1.1 | 661+09 | 77.0x1.2 upper hand in terms of model complexity.
LNet 80.2+3.0" | 67.3+0.5 | 78.3+0.6
AdaLNet | 81.9+1.9" | 70.6 £0.8" | 77.8 £0.7"
DGI 82.5+0.7 | 71.6+0.7 | 78.4+0.7
SGC 81.0+0.0 | 71.9+0.1 | 78.9+0.0

GNN-to-MLP knowledge distillation
(GLNN; Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

19

Overview of the solution proposed by GLNN

GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

Softened probability
distribution p t(7)

Graph structure
S TR — —)

Node features l

[KL divergence loss]
Lip

s~ I ———————

Logit vector z°

* GNN L ooi s Softened probability

 Input: Node features + Graph structure ogit vector z distribution p* (7)

o= LLiEe DOt e S S - GLNN (Zheng et al., ICLR 2022)
. MLP -Aggreg * Main architecture: MLP (Fast!)

* Knowledge distillation (KD) from teacher GNN
* Input: Node feature (no graph structure) (performance 4)
o No actess tograph strciurs * Other follow-up studies
' graph structu (Zhang et al.. 2022: Tian et al.. 2022: Hu et al.. 2021

Shin et al., 2023).

Hinton et al., Distilling the knowledge in a neural network, arXiv 2015
[lllustration] (Modified) Kim et al., Comparing Kullback-Leibler divergence and mean squared error loss in knowledge distillation, IJCAI 2021

Zheng et al., Cold Brew: Distilling graph node representations with incomplete or missing neighborhoods, ICLR 2022
Tian et al,, Learning MLPs on Graphs: A Unified View of Effectiveness, Robustness, and Efficiency, ICLR 2023

Hu et al., Graph-MLP: Node classification without message passing in graph, arXiv 2021

Shin et al., Propagate & Distill: Towards effective graph learners using propagation-embracing MLPs, LoG 2023

Performance of GLNN

GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

Performance: Sometimes even exceeds the teacher GNN

Inference speed: MLPs are just significantly faster

(this is rather obvious)

Datasets SAGE MLP GLNN Apmrp AGNN — MLP
Cora 80.52+1.77 5922+ 131 80.54+135 21.32(36.00%) 0.02 (0.02%) wn — MLPW4 33006.4
Citeseer 1033 L1907 5061 £288 7L.77 X201 12.16 (2040%) 1.44 (2.05%) € 1044
[} Puomed 7539209 67.55+231 75.42+231 7.87(1L65%) 003 (0.04%) —~ —— MLPwWS8 y §
| A-computer 82.97+2.16 67.80+106 83.03:187 1523(2246%) 0.06(0.07%) | GJ
| A-photo 90.90 +0.84 7877174 9211+1.08 1334(1694%) 121(1.33%) £
I Arxiv 7092 +0.17 56.05+046 63.46+045 7.41(1324%) -7.46 (-10.52%) \ =
] Products 78614049 62474010 6886046 639(1023%) 975(-124%) | <v
@)
| Datasets SAGE MLP+ GLNN+ AumLp AcNN \ o
! arxiv 70924 0.17 55314047 72154027 16.85(30.46%) 0.51(0.71%) \ 0]
! Products 78.61+0.49 6450 £045 77.65+048 13.14 (20.38%) -0.97 (-1.23%) \ ‘e
] \
1 \ g
] \ S
1 \ N
Datasets SAGE MLP GLNN NV Aenn @
Cora 80.52 +£1.77 5922 +1.31 80.54+1.35 21.32(36.00%) 0.02 (0.02%)

Why is this surprising? MLPs have no input related to graph structure 1 2 4L 3 4
ayers

Unique benefit in GNN-to-MLP KD compared to traditional KD

GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

Sample x

Softened probability
distribution p*(7)

Teacher network ¢ pu | IN—

Logit vector z¢

[KL divergence loss]
Ll

T

Student network 5 o I e IN—

Softened probability;

Logit vector z° Lk
& distribution p* ()

Knowledge distillation in other domains (e.g., CV)

Graph structure
&
Node features

Node features

* Traditional KD scenarios: Model architectures are more or less the same
* GNN-to-MLP: Vastly different architectures (GNN vs. MLP) and input (Node features + graph structure vs. Node features only)
* The vast architectural difference brings unique benefit and challenges compared to traditional KD scenarios.

-

Student MLP

Knowledge distillation in GNN-to-MLP

. Softened probabilit
Logit vector z¢ rened p y
OBt vector 2 distribution p (1)

(—— 1

Logit vector z°

l

[KL divergence loss]
Lyt

T

([—([

Softened probability
distribution p* (1)

Why does this work?

GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

1) There is always the optimal weight parameter for any given

problem

(Theoretical analysis in the paper) concludes that GNNs are more
expressive than MLPs due to the architectural differences.

Empirically, however, the gap makes little difference when IX| is
large.

In real applications, node features can be high dimensional like

bag-of-words, or even word embeddings, thus making IX| enormous.

These point that the node features should be informative &
correlated to the graph structure, which naturally connects to the
next point...

(Personal note)

2) The problem (i.e., node classification) may be easier than

previously thought.

1 Sentiment classification in NLP

(SST2 dataset)
27051 0 , this cross-cultural soap opera is|painfully|formulaic and|stilted|.
(negative)
Label

Strong negative words

2. Text classification (Jiang et al., ACL 2022)

“Low-Resource” Text Classification: A Parameter-Free Classification
Method with Compressors

Zhiying Jiang?, Matthew Y.R. Yang', Mikhail Tsirlin’,
Raphael Tang', Yiqin Dai? and Jimmy Lin'
! University of Waterloo 2 AFAIK

{zhiying. jiang, m259yang, mtsirlin, r33tang}@uwaterloo.ca
quinn@afaik.io jimmylin@uwaterloo.ca

Another noteworthy study: MLPInit

MLPInit (Han et al., MLPInit: Embarrassingly simple GNN training acceleration with MLP initialization, ICLR’23)

MLP: H' = ¢(H YO/

GNN: H' = ¢(AH" @)

Performance: Naively replacing the weights of GNN to
those of a trained MLP immediately provide benefits.

Computation speed: Training MLPs are MUCH

faster than GNNs

Operation Yelp . 3.9] — fmlp (X, wmlp)
N
#Nodes 716847 Q
—
#Edges 13954819 . 3.0 -
@ . t its not w_9
Forward Backward Total o Notice tha)
Featuretranstorrration *E 95
Z =WX 1.58 4.41 5.99 S
H=AZ 9.74 19157.17 19166.90 z
essage-passing
3199 x 5 2.0
1.5+

Another noteworthy study: MLPInit

MLPInit (Han et al., MLPInit: Embarrassingly simple GNN training acceleration with MLP initialization, ICLR’23)

Results in 1) training speed benefits, 2) performance
benefits and others

0GB-arXiv (GraphSAGE)

Algorithm 1 PyTorch-style Pseudocode of MLPInit

f_gnn: graph neural network model 0.7251
f_mlp: PeerMLP of f_gnn _
Train PeerMLP for N epochs 0.700
for X, Y in dataloader_mlp:

P = f_mlp(X)

loss = nn.CrossEntropyLoss(P, Y) 0.675

loss.backward()
optimizer_mlp.step()

0.650

Initialize GNN with MLPInit
torch.save(f_mlp.state_dict(), "w_mlp.pt") 0.625
f_gnn.load_state_dict("w_mlp.pt"))

Train GNN for n epochs

for X, A, Y in dataloader_gnn: S w S .i? C\Qz Cﬁ? 0? OL{:D VQ‘/ %9 L%
P = f_gnn(X, A) Epoches
loss = nn.CrossEntropyLoss(P, Y)
loss.backward () Methods Flickr Yelp Reddit Reddit2 A-products O0GB-arXiv 0GB-products Avg.

0ptimizer_gnn.step() Random 53.72+016 63.03+020 96.50+0.03 51.76+253 77.58+0.05 72.00+016 80.05+035 70.66

[aa]
% MLPInit 53.82+0.13 63.934023 96.66+004 89.60+160 77.74+006 72.25+030 80.04+062 76.29
% Improv. 10.19% 11.43% 10.16% 173.00% 10.21% +0.36% 10.01% 17.97%

MLPInit proposes to train an MLP on the features, and use the weights to initialize the GNN (and go further training)

Final notes on sampling, sparsification, and decoupling methods

26

An overview of different sampling methods

Node-wise sampling: GraphSAGE [1]

¢°.
-
*
*
*
»
.
o
— o
— -
.

1. Sample neighborhood 2. Aggregate feature information
from neighbors

Strict limit on the maximum number of nodes to aggregate from for all layers

[1] Hamilton et al., Inductive Representation Learning on Large Graphs, NeurlPS 2017

An overview of different sampling methods

Layer-wise sampling: FastGCN [1], LADIES [2]

batch
L ———

HY (4 02 2 Q0000 |

/ / N\ N
[/ ¢ N

\
\

o (@ 0 O

\ N NG
\ SO\
N NN
AN /Z\]
B / \
\ “ / \

|

W (GC80e0oe]

Sample nodes perlayer to avoid redundancy via importance sampling.

[1] Chen et al., FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling, ICLR 2018
[2] Zou et al., Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks, NeurlPS 2019
Figure from FastGCN.

An overview of different sampling methods

Subgraph sampling: ClusterGCN [1], GraphSAINT [2]

Naive GNN ClusterGCN

e (G G2 H
s [F—H G0 H
e (F—H] G2 H
wer (G [Fr H

Let’s extract/partition smaller subgraphs and run full GNNs instead on the full graph.

[1] Chiang et al., Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks, KDD2018
[2] Zeng et al., GraphSAINT: Graph Sampling Based Inductive Learning Method, ICLR 2020
Figure from Cluster-GCN.

An overview of decoupling methods

Decoupling-based methods perform message-passing separately feature transformation, and it is performed once in
the CPU to exploit the large memory capacity.

Typical GNN architecture:

Input feature Propagation via R Aggregation & Outout
Graph structure graph structure Transformation P
) XN
Propagation as pre-processing (SIGN [1]) Propagation as postprocessing (APPNP [2])
> IID
I > ®0 4
e \ fe Neural
Al > (")1 %_’ network

oA e - ¢

: h’L = f 0 (33 ’L) s
oD h
A > @ Z; > Ny)
F ’ r oo Prediction 0D Personalized PageRank =

[1] Fransca et al., SIGN: Scalable Inception Graph Neural Networks, arXiv (2020)
[2] Gasteiger et al., Predict then Propagate: Graph Neural Networks meet Personalized PageRank, ICLR 2019

DSpar: Graph sparsification strategy

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

Sparse matrix multiplication takes most of the computation time in GNNs

100 1
< 80+
Q
£
o 60
o
]
&N
£ 40-
S SpMM
& 20 Matmul

Other
O ! . T K T
ogbn-proteins Reddit ogbn-products

Figure 1: The time profiling of a two-layer GCNs on
different datasets. SpMM in the aggregation phase may
take 70% ~ 90% of the total time.

DSpar: Graph sparsification strategy

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

Graph pruning is a technique that attempts to address this problem by deleting “unimportant” edges.

V'I'heory-based: Prune the edges based on theoretical properties of the graph structure (e.qg., effective resistance [1))

* Learning-based: Directly learn edge importance from the data (e.g., Neural sparsifier, LTH).
Disadvantage: Requires additional learning module to solve an efficiency task.

Figure from: Dolgorsuren et al., EM-FGS: Graph sparsification via faster semi-metric edges pruning. Appl. Intell. 49(10): 3731-3748 (2019)
[1] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913-1926, 2011

DSpar: Graph sparsification strategy

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

Based on an effective resistance-based graph sparsification method

Effective resistance: The total resistance that a current would experience in a circuit, especially

when multiple resistors are connected in series or parallel.
* What is the resistance between two nodes in a ‘circuitfied’ graph?
* Given: The general form of calculating effective resistance is as follows.

(Xu — Xo)CHX, — X,)

Pseudoinverse of the graph Laplacian

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913-1926, 2011

DSpar: Graph sparsification strategy

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

We can replace the pseudoinverse with a degree-based heuristic

Theorem 1 (Corollary 3.3 in Lovész (1993)). For alle = (u,v) € £, we have 5(3-+7) < Re < (3 +),

«
where a (o < 2) is the smallest non-zero eigenvalue of L =1 — D :AD"z.

= The effective resistance can be effectively approximated by degree information

Algorithm 1: Sampling-based Graph Sparsification Spielman & Srivastava (2011)

Input: G = (V,£), sampling probability {pe}ece, number of samples to draw Q.
Output: the sparsified weighted graph G’ = (V,£’) with edge weights {we }ecer

/
1 &« {} determined by the graph size and desired approximation error
2 forj=1,--- (Q)do
3 Sample an edge e ~ £ with replacement according to
4 if e ¢ £’ then proportional to the effective resistance V
5 ’ Add e to & with weight w, = é‘l—c] 1 1
d Re sreplaceto p, X — + —
6 en d,, d,
7 else
8 ’ We — We + A=,
€ € Qpe
9 end
10 end

[y
[y

return G’ = (V, &’) with edge weights {we }ecer

Reducing the process time of Reddit dataset from 263 seconds to 0.6 seconds

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913-1926, 2011

Takeaways

1. Exponential increase of complexity in message-passing results in practical limitations

2. Simple GNN models (GCN): Get rid of non-linearities (mostly) and compress matrix multiplications into one if possible
3. GNN-to-MLP: Use the knowledge of the GNN model to guide the student MLP model

4. MLPInit: Use the weights learned from the MLP to initialize a GNN

5. Sampling: Only use a part of the graph during feed-forward

6. Sparsification (DSpar): Pre-process the graph to reduce unnecessasry edges

/. Decoupling: Reduce the number of aggregation steps as much as possible

Thank you!

Please feel free to ask any questions :)
Jjordan/186.github.io

36

