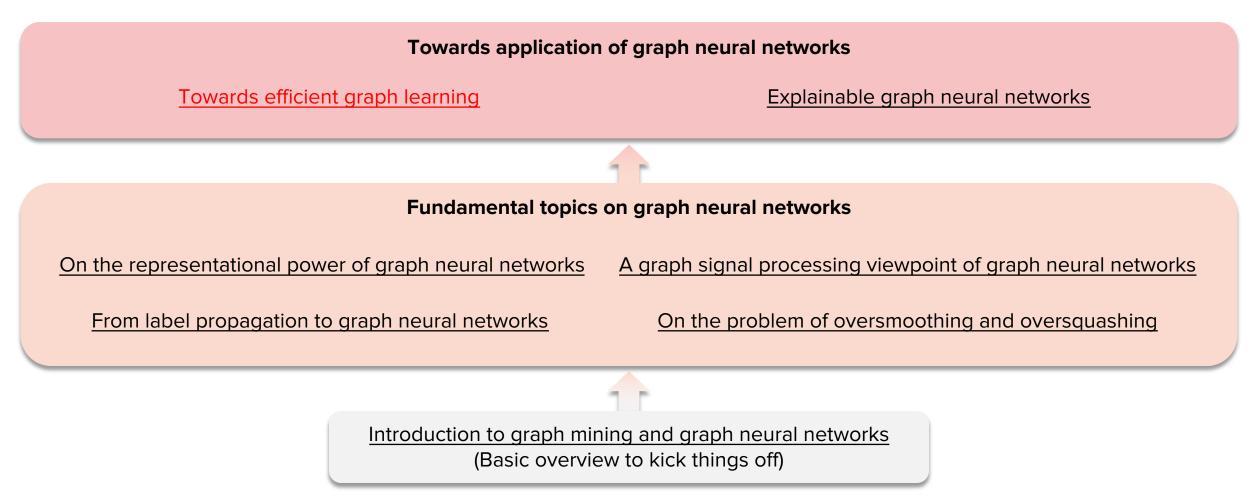
Seminar Series on Graph Neural Networks 06 Towards efficient graph learning

Yong-Min Shin School of Mathematics and Computing (Computational Science and Engineering) Yonsei University 2025.05.19

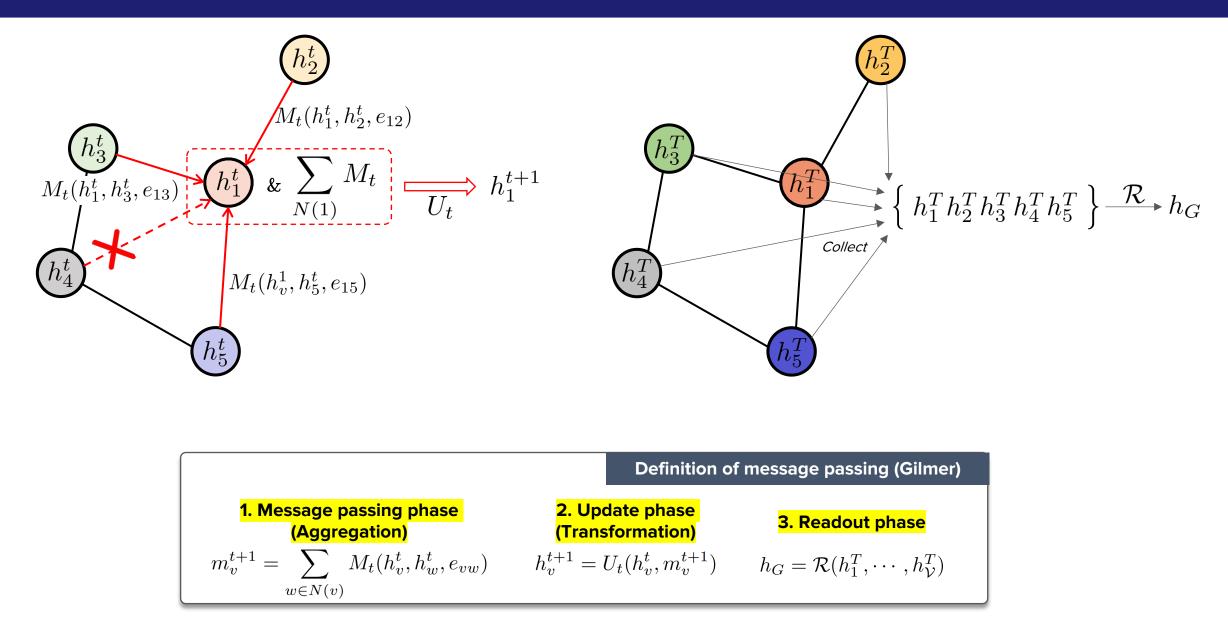
Before going in....



* Presentation slides are available at: (jordan7186.github.io/presentations/)

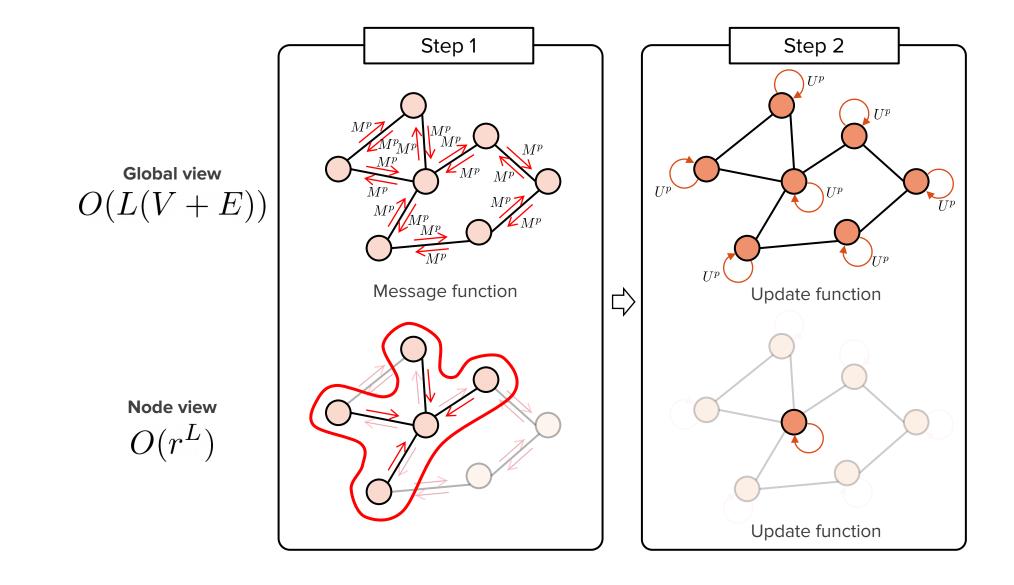
- 1. Understanding the **practical limitations** of GNNs in terms of **efficiency**
- 2. Overview of related field 1: **Simple** GNNs
- 3. Overview of related field 2: GNN-to-MLP knowledge distillation
 - Also check: (Shin et al., Propagate & Distill: Towards effective graph learners using propagationembracing MLPs, LoG 2023), which is on the same subject ©

Recap: Message-passing in graph neural networks



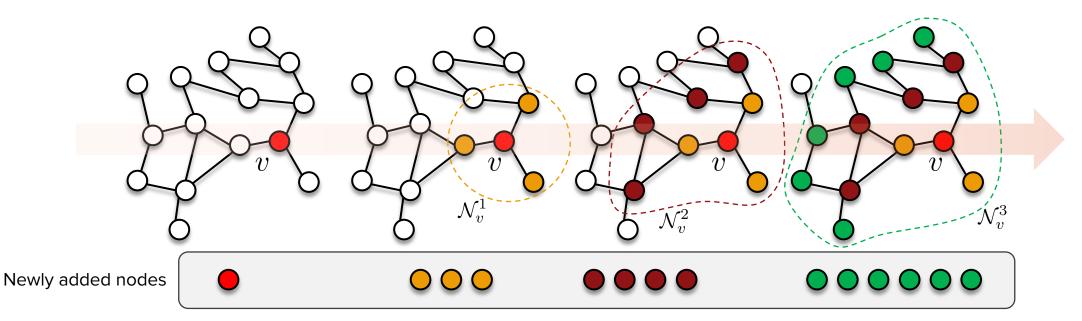
Gilmer et al., Neural Message Passing for Quantum Chemistry, ICML 2017

Recap: Message-passing in graph neural networks



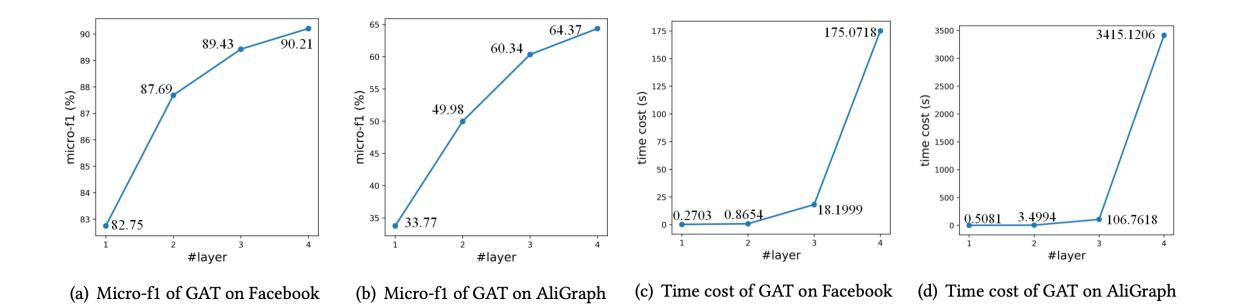
Understanding the practical limitations of GNNs in terms of efficiency

Rethinking GNN time complexity w.r.t. number of layers



The number of nodes included in the computation (**receptive field**) tends to increase <u>exponentially</u> w.r.t. number of GNN layers. Intuitive understanding: Assume each node has an average of d neighboring nodes, then the total number of nodes will be $d^{\Lambda}L$ for L GNN layers.

Rethinking GNN time complexity w.r.t. number of layers

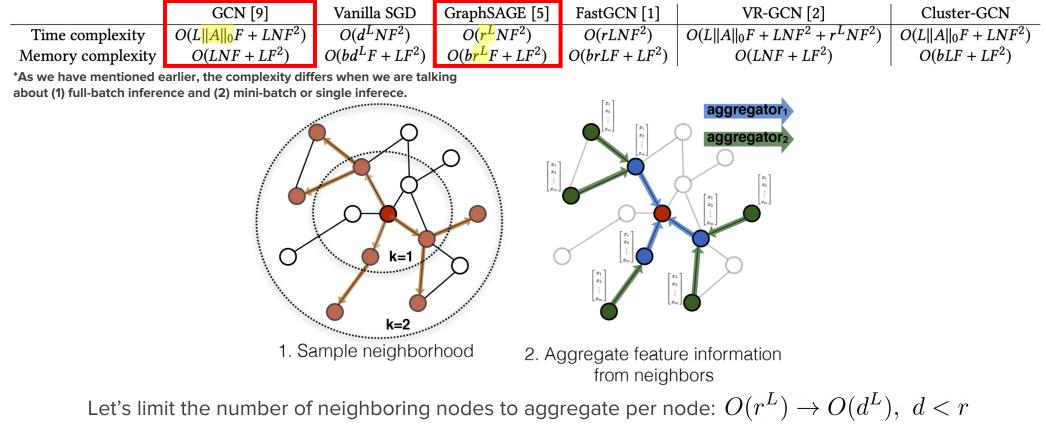


- (a, b) As the number of layers increase, the number of nodes to consider per nodes increases exponentially.
- (c, d) Although the performance gains are there, the **feed-forward (inference) time also increases exponentially** (here, we are interested in mini-batch or single batch inference)

Yan et al., TinyGNN: Learning Efficient Graph Neural Networks, KDD 2020

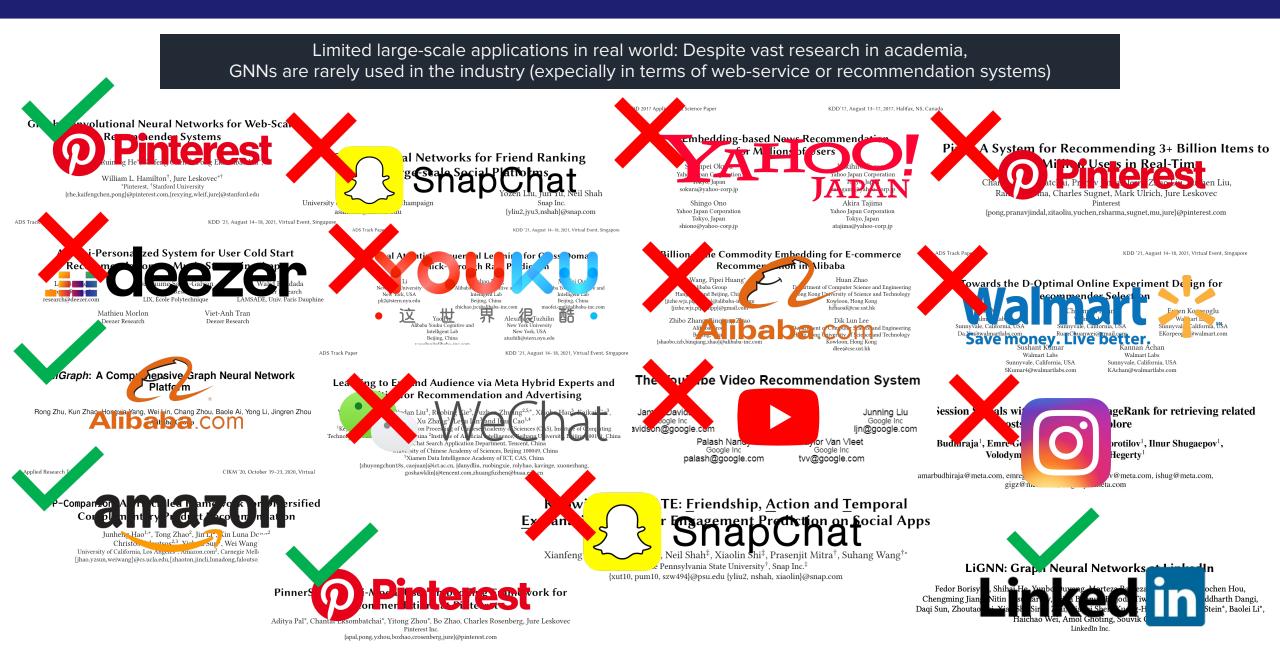
Rethinking GNN time complexity w.r.t. number of layers

Table 1: Time and space complexity of GCN training algorithms. L is number of layers, N is number of nodes, $||A||_0$ is number of nonzeros in the adjacency matrix, and F is number of features. For simplicity we assume number of features is fixed for all layers. For SGD-based approaches, b is the batch size and r is the number of sampled neighbors per node. Note that due to the variance reduction technique, VR-GCN can work with a smaller r than GraphSAGE and FastGCN. For memory complexity, LF^2 is for storing $\{W^{(l)}\}_{l=1}^{L}$ and the other term is for storing embeddings. For simplicity we omit the memory for storing the graph (GCN) or sub-graphs (other approaches) since they are fixed and usually not the main bottleneck.



(Top) Chiang et al., Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks, KDD 2019 (Bottom) Hamilton et al., Inductive Representation Learning on Large Graphs, NeurIPS 2017

Why does this matter?



Why does this matter?

Limited large-scale applications in real world: Despite vast research in academia, GNNs are rarely used in the industry (expecially in terms of web-service or recommendation systems)

OpenReview.net Search OpenReview... Q

← Go to **ICLR 2022 Conference** homepage

Graph-less Neural Networks: Teaching Old MLPs New Tricks Via Distillation

Shichang Zhang, Yozen Liu, Yizhou Sun, Neil Shah

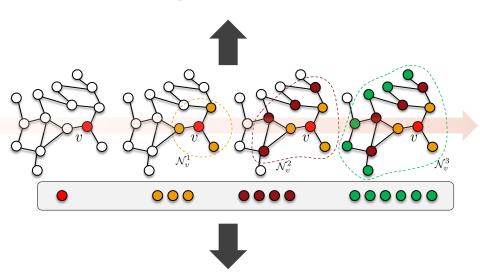
Published: 29 Jan 2022, Last Modified: 04 May 2025 ICLR 2022 Poster Readers: 🔇 Everyone Show Bibtex Show Revisions

- 4. Scenarios we can't meet the inference time constraint even with batching and graph-wise sampling
- As discussed in response #3, batching and graph-wise sampling are typically for training. Inference efficiency remains a challenge even with node/layer-wise sampling. More importantly, instead of meeting a fixed constraint, practical (deployed) models almost always aim to minimize inference time. For GNNs, due to the graph-dependency nature, inference time can meet a fixed time constraint for now doesn't mean it can meet the constraint later when the user base grows and graph densification occurs. A concrete example is GraphInfer [10]: Table 5 in GraphInfer shows that it takes 4423s for a full batch inference of the highly-optimized GraphInfer, so for each 0.01% nodes growth, it will take an added ~400ms, which is considered slow in the standard of the Amazon study: "every 100ms of latency cost them 1% in sales" [12].
- Moreover, from the computing side, inference time can meet a constraint on a server doesn't mean the same model can meet the constraint when deployed on a phone. From the throughput side, fast inference is necessary for high-throughput. When #inference query increases, a small improvement on each query can greatly affect business revenue. A related study by Akamai shows that "A 100-millisecond delay in website load time can hurt conversion rates by 7 percent" [13]. Another example where GNNs are used more often is recommendation systems (RSs). Real RSs often go through two steps. Stage A retrieves representations of relevant items. Then stage B ranks over them [14]. The lower latency in stage A, the more items can be retrieved, and the better performance in stage B for the overall ranking.

Login

Two major approaches to solve this problem

Simpler GNNs: Making GNN architectures more simple



GNN-to-MLP KD: Training a very good MLP model via knowledge distillation from a GNN teacher

*We will also briefly do an overview of <u>sampling</u>, <u>sparsicification</u>, <u>decoupling</u>, <u>and MLPInit</u> along the way.

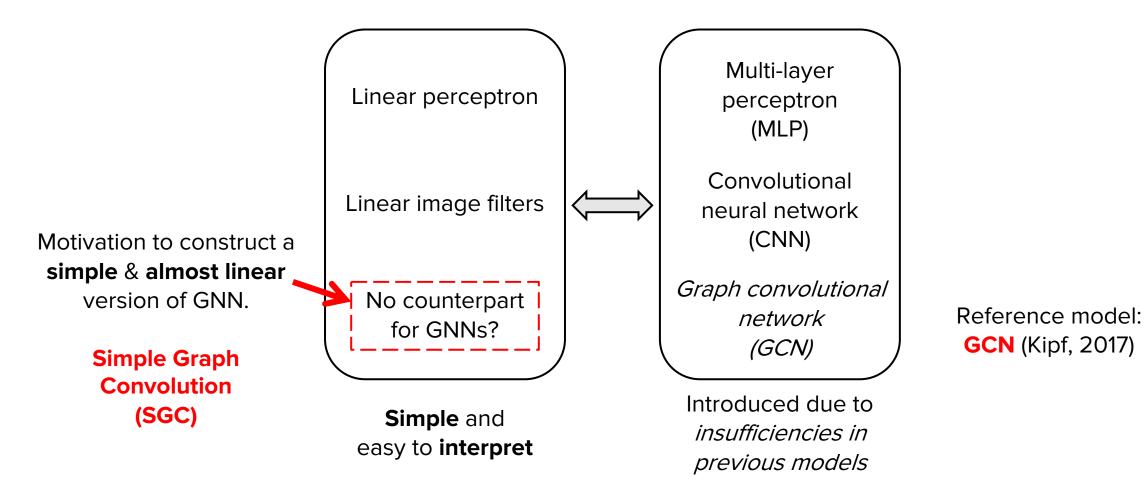
Simple GNN models

(SGC; Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

Motivation: Simple counterpart in graph domain

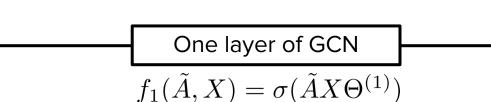
SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

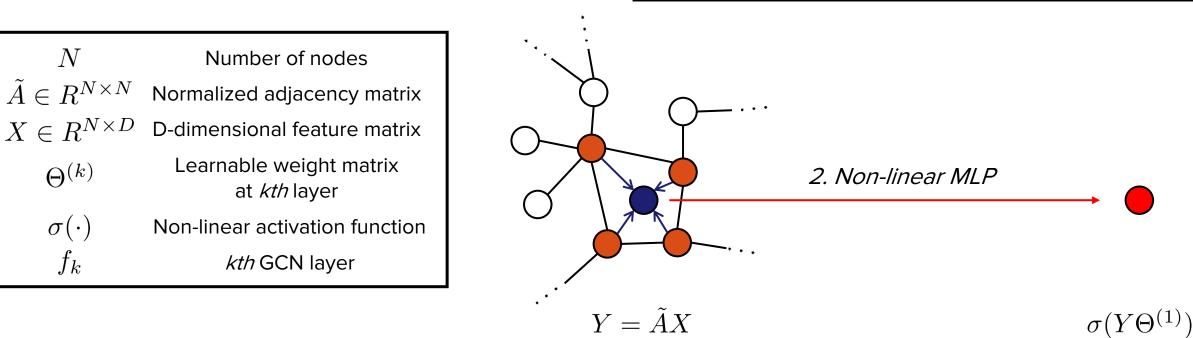
"Historically, the development of machine learning algorithms has followed a clear trend from initial simplicity to need-driven complexity."



Reference model: GCN

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)



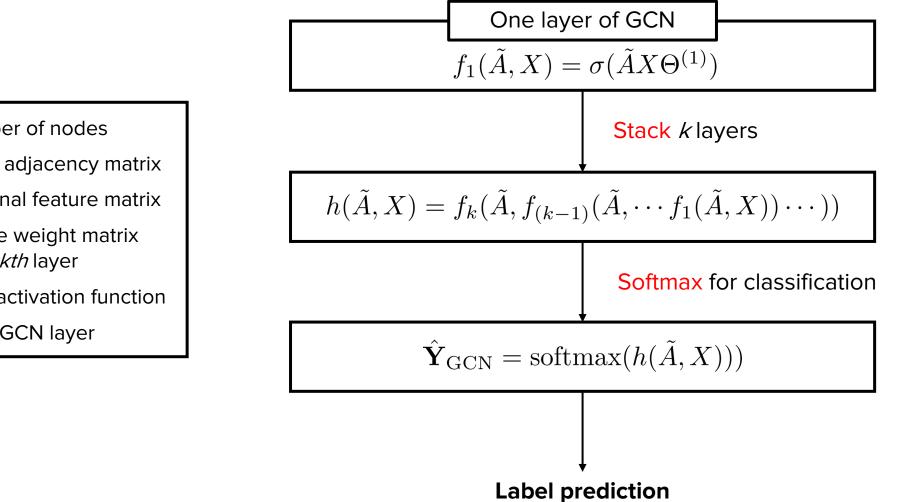


1. Local averaging

Reference model: GCN

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

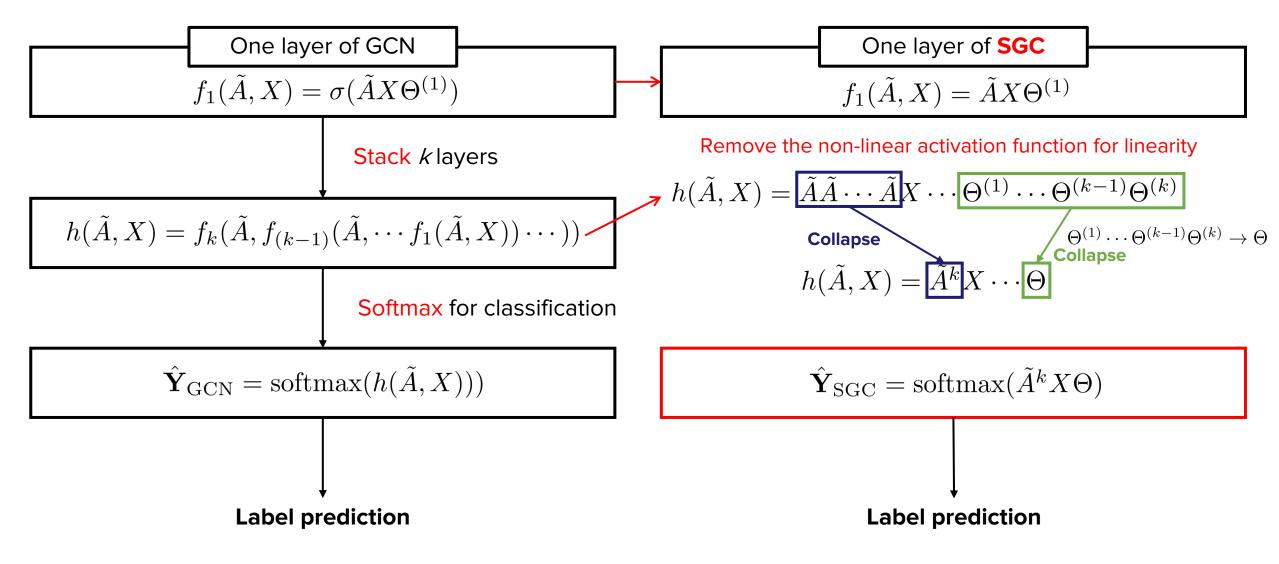
Overall architecture of GCN for node classification



N	Number of nodes
$\tilde{A} \in R^{N \times N}$	Normalized adjacency matrix
$X \in R^{N \times D}$	D-dimensional feature matrix
$\Theta^{(k)}$	Learnable weight matrix at <i>kth</i> layer
$\sigma(\cdot)$	Non-linear activation function
f_k	<i>kth</i> GCN layer

Model architecture for Simplified Graph Convolution

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)



Empirical performance of Simplified Graph Convolution

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

Table 2. Test accuracy (%) averaged over 10 runs on citation networks. [†]We remove the outliers (accuracy < 75/65/75%) when calculating their statistics due to high variance.

	Cora	Citeseer	Pubmed				
Numbers from literature:							
GCN	81.5	70.3	79.0				
GAT	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3				
GLN	81.2 ± 0.1	70.9 ± 0.1	78.9 ± 0.1				
AGNN	83.1 ± 0.1	71.7 ± 0.1	79.9 ± 0.1				
LNet	79.5 ± 1.8	66.2 ± 1.9	78.3 ± 0.3				
AdaLNet	80.4 ± 1.1	68.7 ± 1.0	78.1 ± 0.4				
DeepWalk	70.7 ± 0.6	51.4 ± 0.5	76.8 ± 0.6				
DGI	82.3 ± 0.6	71.8 ± 0.7	76.8 ± 0.6				
Our experiments:							
GCN	81.4 ± 0.4	70.9 ± 0.5	$ 79.0 \pm 0.4$				
GAT	83.3 ± 0.7	72.6 ± 0.6	78.5 ± 0.3				
FastGCN	79.8 ± 0.3	68.8 ± 0.6	77.4 ± 0.3				
GIN	77.6 ± 1.1	66.1 ± 0.9	77.0 ± 1.2				
LNet	$80.2\pm3.0^{\dagger}$	67.3 ± 0.5	$78.3 \pm 0.6^{\dagger}$				
AdaLNet	$81.9 \pm 1.9^\dagger$	$70.6\pm0.8^\dagger$	$77.8 \pm 0.7^{\dagger}$				
DGI	82.5 ± 0.7	71.6 ± 0.7	78.4 ± 0.7				
SGC	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0				

Task: semi-node classification

Dataset: Citation networks (Cora / Citeseer / Pubmed)

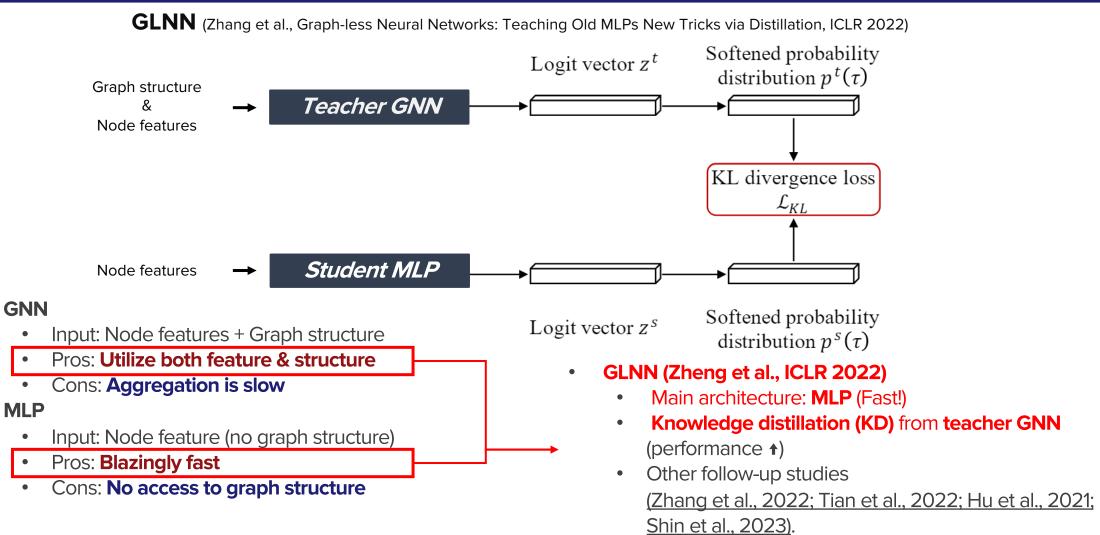
The performance of SGC is very competitive w.r.t. GCN and other GNNs.

It is worth noting that SGCs *already* have the upper hand in terms of model complexity.

GNN-to-MLP knowledge distillation

(GLNN; Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

Overview of the solution proposed by GLNN



Hinton et al., Distilling the knowledge in a neural network, arXiv 2015

٠

٠

[Illustration] (Modified) Kim et al., Comparing Kullback-Leibler divergence and mean squared error loss in knowledge distillation, IJCAI 2021

Zheng et al., Cold Brew: Distilling graph node representations with incomplete or missing neighborhoods, ICLR 2022

Tian et al., Learning MLPs on Graphs: A Unified View of Effectiveness, Robustness, and Efficiency, ICLR 2023

Hu et al., Graph-MLP: Node classification without message passing in graph, arXiv 2021

Shin et al., Propagate & Distill: Towards effective graph learners using propagation-embracing MLPs, LoG 2023

Performance of GLNN

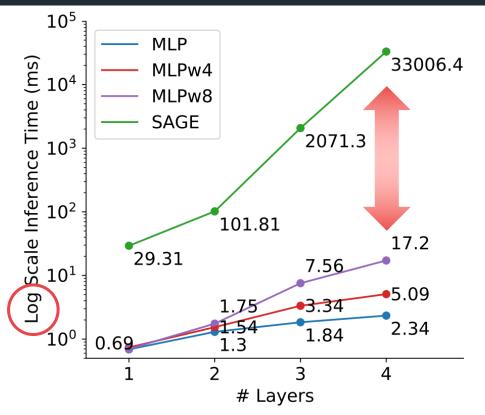
GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

Performance: Sometimes even exceeds the teacher GNN

	Datasets	SAGE	MLP	GLNN	Δ_{MLP}	Δ_{GNN}	
	Cora	80.52 ± 1.77	59.22 ± 1.31	$\textbf{80.54} \pm \textbf{1.35}$	21.32 (36.00%)	0.02 (0.02%)	
	Citeseer	70.33 ± 1.97	59.61 ± 2.88	$\textbf{71.77} \pm \textbf{2.01}$	12.16 (20.40%)	1.44 (2.05%)	
	Pubmed	75.39 ± 2.09	67.55 ± 2.31	$\textbf{75.42} \pm \textbf{2.31}$	7.87 (11.65%)	0.03 (0.04%)	<u>\</u>
	A-computer	82.97 ± 2.16	67.80 ± 1.06	$\textbf{83.03} \pm \textbf{1.87}$	15.23 (22.46%)	0.06 (0.07%)	
- i	A-photo	90.90 ± 0.84	78.77 ± 1.74	$\textbf{92.11} \pm \textbf{1.08}$	13.34 (16.94%)	1.21 (1.33%)	· •
- i	Arxiv	$\textbf{70.92} \pm \textbf{0.17}$	56.05 ± 0.46	63.46 ± 0.45	7.41 (13.24%)	-7.46 (-10.52%)	1
- 1	Products	$\textbf{78.61} \pm \textbf{0.49}$	62.47 ± 0.10	68.86 ± 0.46	6.39 (10.23%)	-9.75 (-12.4%)	1
	Datasets	SAGE	MLP+	GLNN+	Δ_{MLP}	Δ_{GNN}	ĺ
	Arxiv	70.92 ± 0.17	55.31 ± 0.47	$\textbf{72.15} \pm \textbf{0.27}$	16.85 (30.46%)	0.51 (0.71%)	
1	Products	$\textbf{78.61} \pm \textbf{0.49}$	64.50 ± 0.45	77.65 ± 0.48	13.14 (20.38%)	-0.97 (-1.23%)	
i –							
	<i>i</i> 0.4				•	٨	
Datas	ets SA	AGE	MLP	GLNN	Δ_{MLP}	Δ_{GNN}	
Cora	80	$.52 \pm 1.77$	59.22 ± 1.31	$\textbf{80.54} \pm \textbf{1.35}$	21.32 (36.0	0%) 0.02 (0.0	02%)

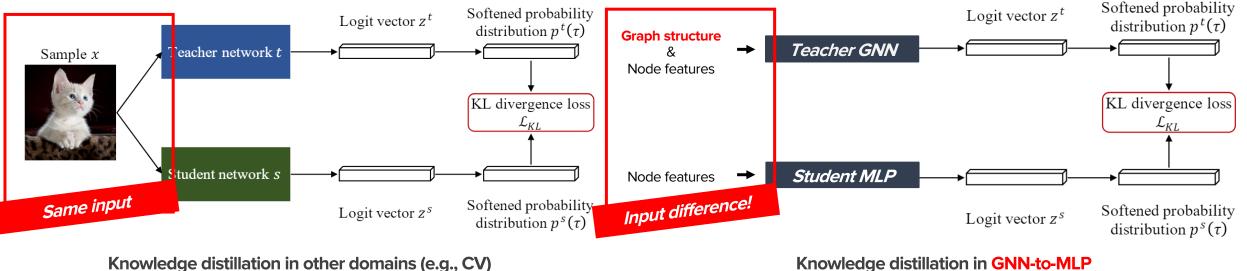
Why is this surprising? MLPs have no input related to graph structure

Inference speed: MLPs are just significantly faster (this is rather obvious)



Unique benefit in GNN-to-MLP KD compared to traditional KD

GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)



Knowledge distillation in GNN-to-MLP

- Traditional KD scenarios: Model architectures are more or less the same
- GNN-to-MLP: Vastly different architectures (GNN vs. MLP) and input (Node features + graph structure vs. Node features only)
- The vast architectural difference brings unique benefit and challenges compared to traditional KD scenarios.

Why does this work?

GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

1) There is always the optimal weight parameter for any given problem

- (Theoretical analysis in the paper) concludes that **GNNs are more** expressive than MLPs due to the architectural differences.
- Empirically, however, the gap makes little difference when |X| is large.
- In real applications, **node features can be high dimensional like bag-of-words**, or even word embeddings, thus making |X| enormous.
- These point that the node features should be informative & correlated to the graph structure, which naturally connects to the next point...

(Personal note)

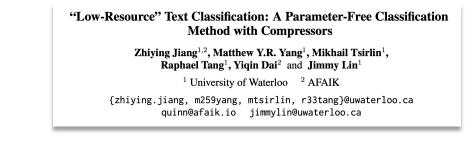
2) The problem (i.e., node classification) may be **easier than previously thought**.

1. Sentiment classification in NLP

(SST2 dataset)



2. Text classification (Jiang et al., ACL 2022)



Another noteworthy study: MLPInit

MLPInit (Han et al., MLPInit: Embarrassingly simple GNN training acceleration with MLP initialization, ICLR'23)

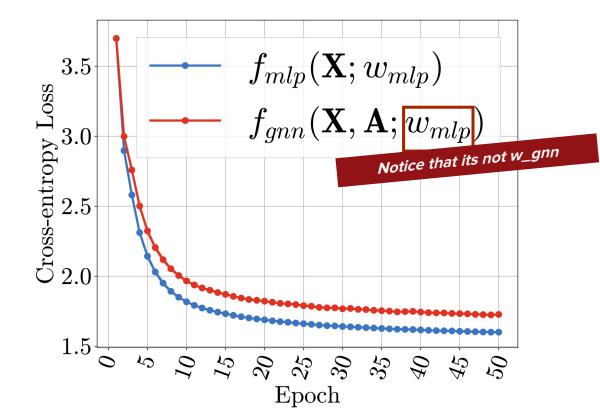
GNN:
$$\mathbf{H}^{l} = \sigma(\mathbf{A}\mathbf{H}^{l-1}\boldsymbol{\Theta}^{l})$$

MLP:
$$\mathbf{H}^{l} = \sigma(\mathbf{H}^{l-1} \Theta^{l})$$

Computation speed: Training MLPs are MUCH faster than GNNs

Performance: <u>Naïvely replacing the weights of GNN</u> to those of a trained MLP <u>immediately provide benefits</u>.

Operation		Yelp	
#Nodes #Edges		716847 13954819	
Featur e transformation	Forward	Backward	Total
Z = WX $H = AZ$ Message-passing	1.58 9.74	4.41 19157.17	5.99 19166.90 3199×



Another noteworthy study: MLPInit

MLPInit (Han et al., MLPInit: Embarrassingly simple GNN training acceleration with MLP initialization, ICLR'23)

Algorithm 1 PyTorch-style Pseudocode of MLPInit

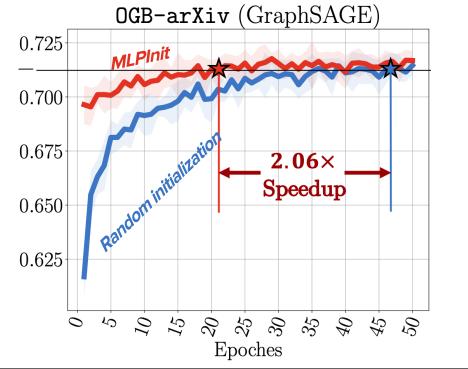
```
# f_gnn: graph neural network model
# f_mlp: PeerMLP of f_gnn
# Train PeerMLP for N epochs
for X, Y in dataloader_mlp:
    P = f_mlp(X)
    loss = nn.CrossEntropyLoss(P, Y)
    loss.backward()
    optimizer_mlp.step()
# Initialize GNN with MLPInit
```

```
# Initialize GNN with MLPInit
torch.save(f_mlp.state_dict(), "w_mlp.pt")
f_gnn.load_state_dict("w_mlp.pt")
```

```
# Train GNN for n epochs
for X, A, Y in dataloader_gnn:
```

```
P = f_gnn(X, A)
loss = nn.CrossEntropyLoss(P, Y)
loss.backward()
optimizer_gnn.step()
```

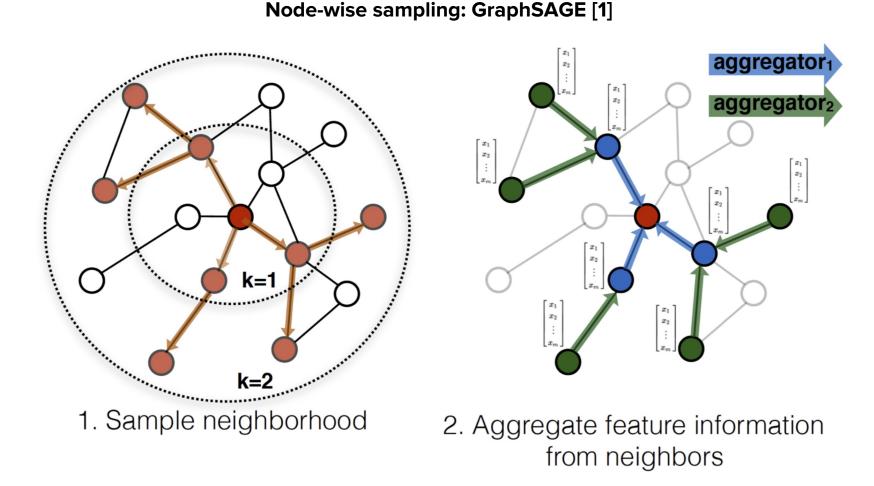
Results in 1) training speed benefits, 2) performance benefits and others



	Methods	Flickr	Yelp	Reddit	Reddit2	A-products	OGB-arXiv	OGB-products	Avg.
U D D D	MLPInit	$53.82{\scriptstyle\pm0.13}$	$63.93{\scriptstyle\pm0.23}$	$96.66{\scriptstyle\pm0.04}$	$51.76{\scriptstyle\pm2.53}\\89.60{\scriptstyle\pm1.60}$	77.74 ± 0.06	$72.25{\scriptstyle\pm0.30}$	$80.04{\scriptstyle\pm0.62}$	70.66 76.29
S	Improv.	$\uparrow 0.19\%$	$\uparrow 1.43\%$	$\uparrow 0.16\%$	$\uparrow 73.09\%$	$\uparrow 0.21\%$	$\uparrow 0.36\%$	$\downarrow 0.01\%$	$\uparrow 7.97\%$

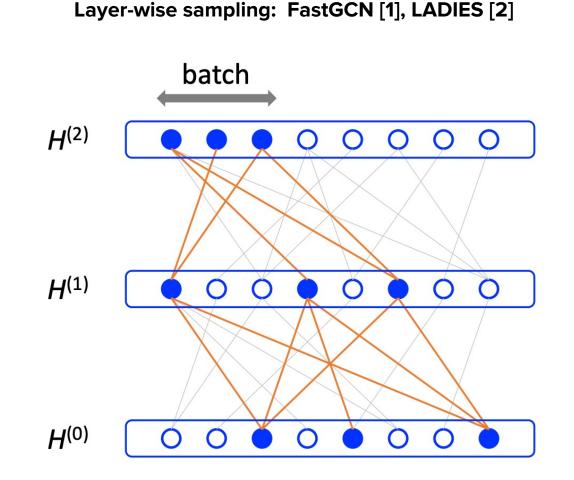
Final notes on sampling, sparsification, and decoupling methods

An overview of different sampling methods



Strict limit on the maximum number of nodes to aggregate from for all layers

An overview of different sampling methods

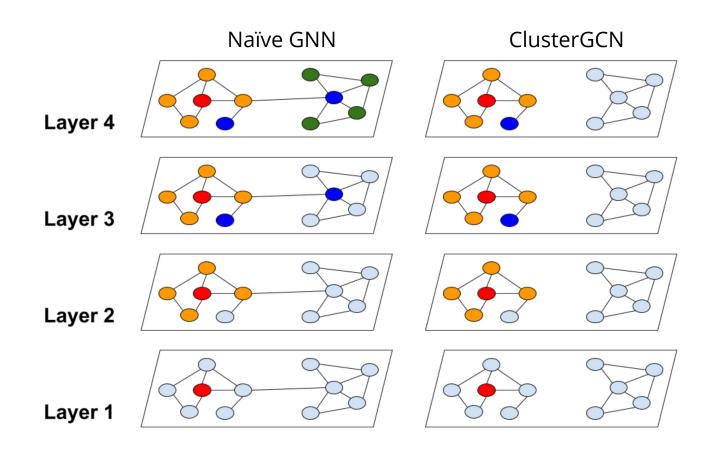


Sample nodes *per* layer to avoid redundancy via importance sampling.

[1] Chen et al., FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling, ICLR 2018
 [2] Zou et al., Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks, NeurIPS 2019
 Figure from FastGCN.

An overview of different sampling methods

Subgraph sampling: ClusterGCN [1], GraphSAINT [2]

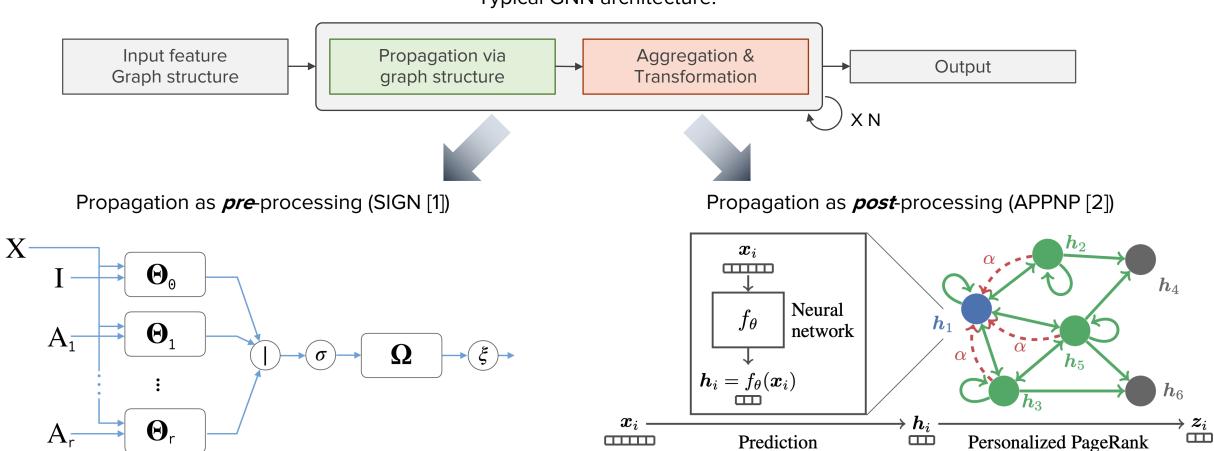


Let's extract/partition smaller subgraphs and run full GNNs instead on the full graph.

[1] Chiang et al., Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks, KDD2018
 [2] Zeng et al., GraphSAINT: Graph Sampling Based Inductive Learning Method, ICLR 2020
 Figure from Cluster-GCN.

An overview of decoupling methods

Decoupling-based methods **perform message-passing separately feature transformation**, and it is performed once in the CPU to exploit the large memory capacity.



Typical GNN architecture:

[1] Fransca et al., SIGN: Scalable Inception Graph Neural Networks, arXiv (2020)[2] Gasteiger et al., Predict then Propagate: Graph Neural Networks meet Personalized PageRank, ICLR 2019

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

Sparse matrix multiplication takes most of the computation time in GNNs

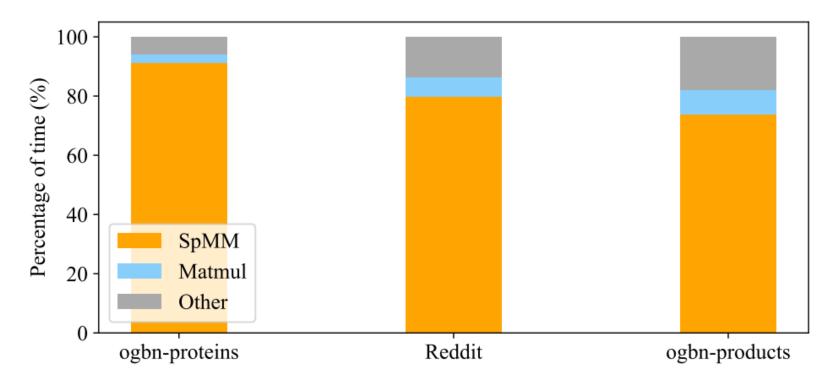
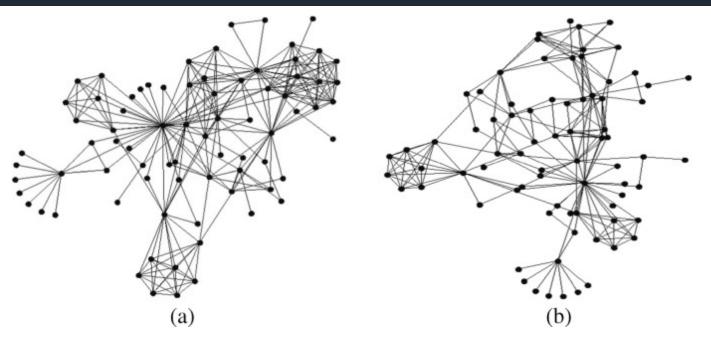


Figure 1: The time profiling of a two-layer GCNs on different datasets. SpMM in the aggregation phase may take $70\% \sim 90\%$ of the total time.

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

Graph pruning is a technique that attempts to address this problem by deleting "unimportant" edges.



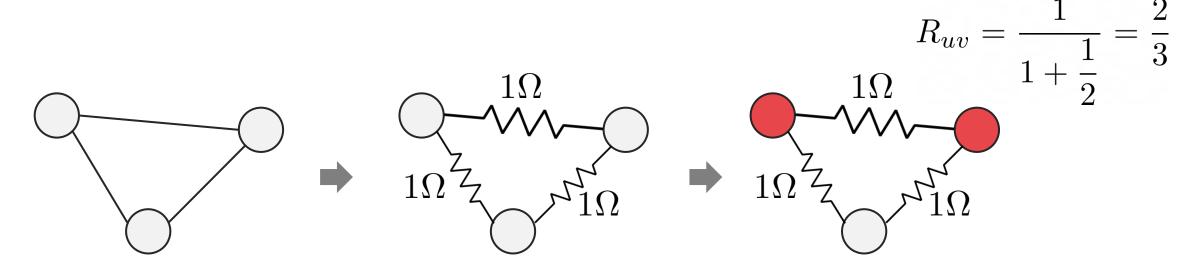
Theory-based: Prune the edges based on theoretical properties of the graph structure (e.g., effective resistance [1])

Learning-based: Directly learn edge importance from the data (e.g., Neural sparsifier, LTH).
 Disadvantage: <u>Requires additional learning module</u> to solve an efficiency task.

Figure from: Dolgorsuren et al., EM-FGS: Graph sparsification via faster semi-metric edges pruning. Appl. Intell. 49(10): 3731-3748 (2019) [1] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

Based on an effective resistance-based graph sparsification method



- Effective resistance: The total resistance that a current would experience in a circuit, especially when multiple resistors are connected in series or parallel.
- What is the resistance between two nodes in a 'circuitfied' graph?
- Given: The general form of calculating effective resistance is as follows.

$$(X_u - X_v)^{\top} \mathcal{L}^+ (X_u - X_v)$$

Pseudoinverse of the graph Laplacian

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

We can replace the pseudoinverse with a degree-based heuristic

Theorem 1 (Corollary 3.3 in Lovász (1993)). For all $e = (u, v) \in \mathcal{E}$, we have $\frac{1}{2}(\frac{1}{d_u} + \frac{1}{d_v}) \leq R_e \leq \frac{1}{\alpha}(\frac{1}{d_u} + \frac{1}{d_v})$, where α ($\alpha \leq 2$) is the smallest non-zero eigenvalue of $\mathcal{L} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}}A\mathbf{D}^{-\frac{1}{2}}$.

= The effective resistance can be effectively approximated by degree information

Algorithm 1: Sampling-based Graph Sparsification Spielman & Srivastava (2011) **Input:** $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, sampling probability $\{p_e\}_{e \in \mathcal{E}}$, number of samples to draw Q. **Output:** the sparsified weighted graph $\mathcal{G}' = (\mathcal{V}, \mathcal{E}')$ with edge weights $\{w_e\}_{e \in \mathcal{E}'}$ 1 $\mathcal{E}' \leftarrow \{\}$ determined by the graph size and desired approximation error **2** for $j = 1, \dots, Q$ do Sample an edge $e \sim \mathcal{E}$ with replacement according to p_e 3 proportional to the <u>effective resistance</u> ightarrow replace to $p'_e \propto \frac{1}{d_u} + \frac{1}{d_w}$ if $e \notin \mathcal{E}'$ then 4 Add e to \mathcal{E}' with weight $w_e = \frac{A_e}{Qp_e}$ 5 end 6 else 7 $w_e \leftarrow w_e + \frac{A_e}{Qp_e}$. 8 end 9 10 end 11 return $\mathcal{G}' = (\mathcal{V}, \mathcal{E}')$ with edge weights $\{w_e\}_{e \in \mathcal{E}'}$

Reducing the process time of Reddit dataset from 263 seconds to 0.6 seconds

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011

Takeaways

- 1. Exponential increase of complexity in message-passing results in practical limitations
- 2. Simple GNN models (GCN): Get rid of non-linearities (mostly) and compress matrix multiplications into one if possible
- 3. GNN-to-MLP: Use the knowledge of the GNN model to guide the student MLP model
- 4. MLPInit: Use the weights learned from the MLP to initialize a GNN
- 5. Sampling: Only use a part of the graph during feed-forward
- 6. Sparsification (DSpar): Pre-process the graph to reduce unnecessasry edges
- 7. Decoupling: Reduce the number of aggregation steps as much as possible

Thank you!

Please feel free to ask any questions :) *jordan7186.github.io*