


Before going in…. 2

* Presentation slides are available at:
(jordan7186.github.io/presentations/)

Introduction to graph mining and graph neural networks
(Basic overview to kick things off)

On the representational power of graph neural networks A graph signal processing viewpoint of graph neural networks

On the problem of oversmoothing and oversquashing

Fundamental topics on graph neural networks

Towards application of graph neural networks

Towards efficient graph learning Explainable graph neural networks

From label propagation to graph neural networks



Objectives 3

1. Understanding the practical limitations of GNNs in terms of efficiency
2. Overview of related field 1: Simple GNNs
3. Overview of related field 2: GNN-to-MLP knowledge distillation

• Also check: (Shin et al., Propagate & Distill: Towards effective graph learners using propagation-
embracing MLPs, LoG 2023), which is on the same subject J



Recap: Message-passing in graph neural networks 4

&

Collect

1. Message passing phase 
(Aggregation)

2. Update phase 
(Transformation) 3. Readout phase

Definition of message passing (Gilmer)

Gilmer et al., Neural Message Passing for Quantum Chemistry, ICML 2017



Recap: Message-passing in graph neural networks 5

Message function

Step 1

Global view

Node view

Update function

Update function

Step 2
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Understanding the practical limitations of GNNs in terms of efficiency



Rethinking GNN time complexity w.r.t. number of layers 7

Newly added nodes

The number of nodes included in the computation (receptive field) tends to increase exponentially w.r.t. number of GNN layers.
Intuitive understanding: Assume each node has an average of d neighboring nodes, then the total number of nodes will be d^L for L GNN layers.



Rethinking GNN time complexity w.r.t. number of layers 8

• (a, b) As the number of layers increase, the number of nodes to consider per nodes increases exponentially.
• (c, d) Although the performance gains are there, the feed-forward (inference) time also increases exponentially 

(here, we are interested in mini-batch or single batch inference)

Yan et al., TinyGNN: Learning Efficient Graph Neural Networks, KDD 2020



Rethinking GNN time complexity w.r.t. number of layers 9

(Top) Chiang et al., Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks, KDD 2019
(Bottom) Hamilton et al., Inductive Representation Learning on Large Graphs, NeurIPS 2017

Let’s limit the number of neighboring nodes to aggregate per node:

*As we have mentioned earlier, the complexity differs when we are talking 
about (1) full-batch inference and (2) mini-batch or single inferece.



Why does this matter? 10

Limited large-scale applications in real world: Despite vast research in academia, 
GNNs are rarely used in the industry (expecially in terms of web-service or recommendation systems)



Why does this matter? 11

Limited large-scale applications in real world: Despite vast research in academia, 
GNNs are rarely used in the industry (expecially in terms of web-service or recommendation systems)

https://openreview.net/forum?id=4p6_5HBWPCw



Two major approaches to solve this problem 12

Simpler GNNs: Making GNN architectures more simple

GNN-to-MLP KD: Training a very good MLP model via knowledge distillation from a GNN teacher

*We will also briefly do an overview of sampling, sparsicification, decoupling, and MLPInit along the way.
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Simple GNN models
(SGC; Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)



Motivation: Simple counterpart in graph domain 14

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

“Historically, the development of machine learning algorithms has 
followed a clear trend from initial simplicity to need-driven complexity.”

Linear perceptron
Multi-layer 
perceptron

(MLP)

Linear image filters
Convolutional 

neural network
(CNN)

Simple and
easy to interpret

Introduced due to 
insufficiencies in 
previous models

Graph convolutional 
network
(GCN)

No counterpart 
for GNNs?

Motivation to construct a 
simple & almost linear 

version of GNN.

Simple Graph 
Convolution

(SGC)

Reference model:
GCN (Kipf, 2017)



Reference model: GCN 15

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

2. Non-linear MLP

1. Local averaging

Normalized adjacency matrix

D-dimensional feature matrix

Learnable weight matrix
at kth layer

Non-linear activation function

kth GCN layer

Number of nodes

One layer of GCN



Reference model: GCN 16

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

Overall architecture of GCN for node classification

Normalized adjacency matrix

D-dimensional feature matrix

Learnable weight matrix
at kth layer

Non-linear activation function

kth GCN layer

Number of nodes

One layer of GCN

Stack k layers

Softmax for classification

Label prediction



Model architecture for Simplified Graph Convolution 17

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

Remove the non-linear activation function for linearity

One layer of GCN

Stack k layers

Softmax for classification

Label prediction Label prediction

One layer of SGC

Collapse
Collapse



Empirical performance of Simplified Graph Convolution 18

SGC (Wu et al., Simplifying Graph Convolutional Networks, ICML 2019)

Task: semi-node classification

Dataset: Citation networks (Cora / Citeseer / Pubmed)

The performance of SGC is very competitive 
w.r.t. GCN and other GNNs.

It is worth noting that SGCs already have the 
upper hand in terms of model complexity.
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GNN-to-MLP knowledge distillation
(GLNN; Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)



Overview of the solution proposed by GLNN 20

GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

Graph structure
&

Node features

Node features

Hinton et al., Distilling the knowledge in a neural network, arXiv 2015
[Illustration] (Modified) Kim et al., Comparing Kullback-Leibler divergence and mean squared error loss in knowledge distillation, IJCAI 2021
Zheng et al., Cold Brew: Distilling graph node representations with incomplete or missing neighborhoods, ICLR 2022
Tian et al., Learning MLPs on Graphs: A Unified View of Effectiveness, Robustness, and Efficiency, ICLR 2023
Hu et al., Graph-MLP: Node classification without message passing in graph, arXiv 2021
Shin et al., Propagate & Distill: Towards effective graph learners using propagation-embracing MLPs, LoG 2023



Performance of GLNN 21

GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

Performance: Sometimes even exceeds the teacher GNN Inference speed: MLPs are just significantly faster
(this is rather obvious)

Why is this surprising? MLPs have no input related to graph structure



Unique benefit in GNN-to-MLP KD compared to traditional KD 22

GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

Graph structure
&

Node features

Node features

• Traditional KD scenarios: Model architectures are more or less the same
• GNN-to-MLP: Vastly different architectures (GNN vs. MLP) and input (Node features + graph structure vs. Node features only)
• The vast architectural difference brings unique benefit and challenges compared to traditional KD scenarios.



Why does this work? 23

GLNN (Zhang et al., Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation, ICLR 2022)

1) There is always the optimal weight parameter for any given 
problem

2) The problem (i.e., node classification) may be easier than 
previously thought.

• (Theoretical analysis in the paper) concludes that GNNs are more 
expressive than MLPs due to the architectural differences.

• Empirically, however, the gap makes little difference when |X| is 
large. 

• In real applications, node features can be high dimensional like 
bag-of-words, or even word embeddings, thus making |X| enormous.

• These point that the node features should be informative & 
correlated to the graph structure, which naturally connects to the 
next point…



Another noteworthy study: MLPInit 24

MLPInit (Han et al., MLPInit: Embarrassingly simple GNN training acceleration with MLP initialization, ICLR’23)

Computation speed: Training MLPs are MUCH 
faster than GNNs

Performance: Naïvely replacing the weights of GNN to 
those of a trained MLP immediately provide benefits.

Notice that its not w_gnn



Another noteworthy study: MLPInit 25

MLPInit (Han et al., MLPInit: Embarrassingly simple GNN training acceleration with MLP initialization, ICLR’23)

Results in 1) training speed benefits, 2) performance 
benefits and others

MLPInit proposes to train an MLP on the features, and use the weights to initialize the GNN (and go further training)
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Final notes on sampling, sparsification, and decoupling methods



An overview of different sampling methods 27

Node-wise sampling: GraphSAGE [1]

Strict limit on the maximum number of nodes to aggregate from for all layers

[1] Hamilton et al., Inductive Representation Learning on Large Graphs, NeurIPS 2017



An overview of different sampling methods 28

Layer-wise sampling:  FastGCN [1], LADIES [2]

Sample nodes per layer to avoid redundancy via importance sampling.

[1] Chen et al., FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling, ICLR 2018
[2] Zou et al., Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks, NeurIPS 2019
Figure from FastGCN.



An overview of different sampling methods 29

Subgraph sampling:  ClusterGCN [1], GraphSAINT [2]

Let’s extract/partition smaller subgraphs and run full GNNs instead on the full graph.

[1] Chiang et al., Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks, KDD2018
[2] Zeng et al., GraphSAINT: Graph Sampling Based Inductive Learning Method, ICLR 2020
Figure from Cluster-GCN.

ClusterGCNNaïve GNN



An overview of decoupling methods 30

Decoupling-based methods perform message-passing separately feature transformation, and it is performed once in 
the CPU to exploit the large memory capacity.

[1] Fransca et al., SIGN: Scalable Inception Graph Neural Networks, arXiv (2020)
[2] Gasteiger et al., Predict then Propagate: Graph Neural Networks meet Personalized PageRank, ICLR 2019

Propagation as post-processing (APPNP [2])Propagation as pre-processing (SIGN [1])

Typical GNN architecture:

Input feature
Graph structure

Propagation via
graph structure

Aggregation &
Transformation Output

X N



DSpar: Graph sparsification strategy 31

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

Sparse matrix multiplication takes most of the computation time in GNNs



DSpar: Graph sparsification strategy 32

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

Graph pruning is a technique that attempts to address this problem by deleting “unimportant” edges.

Figure from: Dolgorsuren et al., EM-FGS: Graph sparsification via faster semi-metric edges pruning. Appl. Intell. 49(10): 3731-3748 (2019)
[1] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011



DSpar: Graph sparsification strategy 33

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

Based on an effective resistance-based graph sparsification method 

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011



DSpar: Graph sparsification strategy 34

Liu et al., DSpar: An Embarrisingly Simple Strategy for Efficient GNN Training and Inference via Degree-based Sparsification, TMLR (2023)

We can replace the pseudoinverse with a degree-based heuristic

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011



Takeaways 35

1. Exponential increase of complexity in message-passing results in practical limitations

2. Simple GNN models (GCN): Get rid of non-linearities (mostly) and compress matrix multiplications into one if possible

3. GNN-to-MLP: Use the knowledge of the GNN model to guide the student MLP model

4. MLPInit: Use the weights learned from the MLP to initialize a GNN

5. Sampling: Only use a part of the graph during feed-forward

6. Sparsification (DSpar): Pre-process the graph to reduce unnecessasry edges

7. Decoupling: Reduce the number of aggregation steps as much as possible
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Thank you!
Please feel free to ask any questions :)

jordan7186.github.io


